46 research outputs found

    Energy-aware Georouting with Guaranteed Delivery in Wireless Sensor Networks with Obstacles

    Get PDF
    International audienceWe propose, EtE, a novel end-to-end localized routing protocol for wireless sensor networks that is energy-efficient and guarantees delivery. To forward a packet, a node s in graph G computes the cost of the energy weighted shortest path between s and each of its neighbors in the forward direction towards the destination which minimizes the ratio of the cost of the shortest path to the progress (reduction in distance towards the destination). It then sends the message to the first node on the shortest path from s to x: say node x′. Node x′ restarts the same greedy rout- ing process until the destination is reached or an obstacle is encountered and the routing fails. To recover from the latter scenario, local minima trap, our algorithm invokes an energy-aware Face routing that guarantees delivery. Our work is the first to optimize energy consumption of Face routing. It works as follows. First, it builds a connected dominating set from graph G, second it computes its Gabriel graph to obtain the planar graph G′. Face routing is invoked and applied to G′ only to determine which edges to follow in the recovery process. On each edge, greedy rout- ing is applied. This two-phase (greedy-Face) End-to-End routing process (EtE) reiterates until the final destination is reached. Simulation results show that EtE outperforms several existing geographical routing on en- ergy consumption metric and delivery rate. Moreover, we prove that the computed path length and the total energy of the path are constant factors of the optimal for dense networks

    Optimal transmission radius for energy efficient broadcasting protocols in ad hoc and sensor networks

    Full text link

    How to improve CSMA-based MAC protocol for dense RFID reader-to-reader Networks?

    Get PDF
    International audienceDue to the dedicated short range communication feature of passive radio frequency identification (RFID) and the closest proximity operation of both tags and readers in a large-scale dynamic RFID system, when nearby readers simultaneously try to communicate with tags located within their interrogation range, serious interference problems may occur. Such interferences may cause signal collisions that lead to the reading throughput barrier and degrade the system performance. Although many efforts have been done to maximize the throughput by proposing protocols such as NFRA or more recently GDRA, which is compliant with the EPCglobal and ETSI EN 302 208 standards. However, the above protocols are based on unrealistic assumptions or require additional components with more control packet and perform worse in terms of collisions and latency, etc. In this paper, we explore the use of some well-known Carrier Sense Multiple Access (CSMA) backoff algorithms to improve the existing CSMA-based reader-to-reader anti-collision protocol in dense RFID networks. Moreover, the proposals are compliant with the existing standards. We conduct extensive simulations and compare their performance with the well-known state-of-the-art protocols to show their performance under various criteria. We find that the proposals improvement are highly suitable for maximizing the throughput, efficiency and for minimizing both the collisions and coverage latency in dense RFID Systems

    Energy Efficient Mobile Routing in Actuator and Sensor Networks with Connectivity Preservation

    Get PDF
    International audienceIn mobile wireless sensor networks, flows sent from data col- lecting sensors to a sink could traverse inefficient resource expensive paths. Such paths may have several negative effects such as devices bat- tery depletion that may cause the network to be disconnected and packets to experience arbitrary delays. This is particularly problematic in event- based sensor networks (deployed in disaster recovery missions) where flows are of great importance. In this paper, we use node mobility to im- prove energy consumption of computed paths. Mobility is a two-sword edge, however. Moving a node may render the network disconnected and useless. We propose CoMNet (Connectivity preservation Mobile routing protocol for actuator and sensor NETworks), a localized mechanism that modifies the network topology to support resource efficient transmissions. To the best of our knowledge, CoMNet is the first georouting algorithm which considers controlled mobility to improve routing energy consump- tion while ensuring network connectivity. CoMNet is based on (i) a cost to progress metric which optimizes both sending and moving costs, (ii) the use of a connected dominating set to maintain network connectivity. CoMNet is general enough to be applied to various networks (actuator, sensor). Our simulations show that CoMNet guarantees network connec- tivity and is effective in achieving high delivery rates and substantial energy savings compared to traditional approaches

    Message from the workshop chairs

    No full text
    corecore